Number of solutions to linear systems and Rank

Chapter 7

In this additional document we discuss the number of solutions to linear systems \(Ax = b \) in the light of the rank of \(A \). Let \(A \in \mathbb{R}^{m \times n} \) and consider the linear system

\[
Ax = b
\]

for some right-hand side \(b \in \mathbb{R}^n \). Let \(\{ c_1, \ldots, c_n \} \) denote the columns of \(A \). Since

\[
\text{col}(A) = \text{span}\{ c_1, \ldots, c_n \} \subset \text{span}\{ c_1, \ldots, c_n, b \} = \text{col}([A|b])
\]

it always holds

\[
\text{rank}(A) = \dim(\text{col}(A)) \leq \dim(\text{col}([A|b])) = \text{rank}([A|b])
\]

Let us now review the number of solutions to (1). We will consider two cases: \(b \in \text{Im}(A) \) and \(b \notin \text{Im}(A) \).

- Assume that \(b \notin \text{Im}(A) \). Then we have the strict inclusion \(\text{col}(A) \subsetneq \text{col}([A|b]) \) so

\[
\text{rank}(A) < \text{rank}([A|b])
\]

- Assume that \(b \in \text{Im}(A) \). Clearly we have

\[
(1) \text{ admits at least one solution } \iff b \in \text{Im}(A) = \text{col}(A) \\
\iff \text{rank}(A) = \text{rank}([A|b])
\]

To proceed further we need to consider two subcases, depending on the dimension of the null space of \(A \). We will use the fact that the solution to (1) writes as

\[
x = x_0 + \xi
\]

where \(x_0 \) is a particular solution to (1) and \(\xi \in \text{null}(A) \).

- If \(\dim(\text{null}(A)) = 0 \) then there is a unique solution (\(x_0 \)) and

\[
\text{rank}(A) = \text{rank}([A|b]) = n
\]

from (4) and using the dimension formula \(\dim(\text{null}(A)) = n - \text{rank}(A) = 0 \).

- If \(\dim(\text{null}(A)) > 0 \) there exists an infinite number of solutions (\(\{ x = x_0 + \xi \} \)) and

\[
\text{rank}(A) = \text{rank}([A|b]) < n
\]

since \(\text{rank}(A) = n - \dim(\text{null}(A)) < n \).

In summary we have shown that

<table>
<thead>
<tr>
<th>Condition on the rank</th>
<th>Number of solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b \notin \text{col}(A))</td>
<td>(\text{rank}(A) < \text{rank}([A</td>
</tr>
<tr>
<td>(b \in \text{col}(A))</td>
<td>(\text{rank}(A) = \text{rank}([A</td>
</tr>
<tr>
<td>(\text{rank}(A) = n (\text{null}(A) = {0}))</td>
<td>(\text{rank}(A) < n (\dim(\text{null}(A)) > 0))</td>
</tr>
</tbody>
</table>

\[1\] Let \(x_0 \) be a particular solution to (1). Then \(x \) is solution to (1) if and only if \(x = x_0 + \xi \). Indeed, if \(x \) is solution to (1) then \(\xi := x - x_0 \) belongs to \(\text{null}(A) \). Conversely, if \(x = x_0 + \xi \) then \(Ax = A(x_0 + \xi) = b + 0 = b \).